
Research in teams
The Steklov eigenproblem under polygonal and

polyhedral approximation

1 Overview
Our goal for this RIT was to bring together expertise in numerical analysis and spectral geometry, to study
the impact of domain approximations on the Steklov spectrum.

Let Ω be a bounded domain in Rd, d ∈ {2, 3}. Let H1(Ω) be the Sobolev space W 1,2(Ω). Endowed with
the inner product (u, v)H1(Ω) = (u, v)L2(Ω) + (∇u,∇ v)L2(Ω), where (·, ·)L2(Ω) is the usual L2-inner product

(u, v)L2(Ω) =

∫
Ω

u v, the space H1(Ω) is a Hilbert space. The Steklov problem can be stated in weak form

as: find u ̸= 0 ∈ H1(Ω), λ ∈ R such that∫
Ω

∇u · ∇v = λ

∫
∂Ω

uv, ∀v ∈ H1(Ω). (1)

Under fairly mild conditions on the boundary regularity of Ω (eg. Lipschitz), it is well known that the
Steklov spectrum is countable, accumulates only at infinity, and consists of non-negative real values.

The eigenvalue problem cannot be solved in closed form except for some special domains. In most
instances, a provably convergent numerical approximation of solutions to (1) must be devised and computed.

The finite element approach is a discretization scheme that relies on the variational characterization of
eigenvalue problems, and allows for provable error and approximation estimates. In this approach, a domain
is tesselated by (non-overlapping, usually simplicial) subdomains, and polynomial spaces on the subdomains
with some global properties are used to achieve approximation of eigenfunctions. Denote by Ωh the union
of these subdomains.

Recent work in numerical analysis has focused on finite element approximation of the Steklov spectrum
for polygonal and polyhedral domains since they are naturally tesselated by simplices. In this case, there
is no variational crime since the domain of interest is precisely the union of the subdomains. When this
is not the case, obtaining precise rate of convergence is harder, especially uniformly in the eigenvalues and
eigenfunctions. The characterisation of the convergence properties of finite element methods for smooth
domains is of crucial importance for the Steklov eigenproblem – most of the interesting behaviour of the
eigenfunctions happens close to the boundary.

Since both the analytico-geometric and finite element approaches are framed within the variational
paradigm, we aim at combining these two approaches to reduce the drawbacks from either. More broadly,
there are technical questions in each of the fields of spectral geometry and numerical analysis which could
be answered using techniques from the other.

2 Objectives for the workshop
The goal of this RIT activity was to study an open question posed in an AIM workshop in 2018 which links
numerical analysis and spectral geometry:
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Question 1: If we use a finite element approximation via polygonal domains Ωh to a smooth domain Ω ,
in what precise sense do the Steklov eigenvalues of Ωh converge to those of Ωh?

Fundamental recent results in spectral geometry tell us the very different rates at which the spectra of
smooth domains and those of polygonal domains approach certain quasimodes. The implication in numerical
analysis is to raise the following question: if we use a finite element approximation via polygonal domains
to a smooth domain, in what precise sense do the spectra of the approximants converge to the actual one?
Let Ω ⊂ Rd be a bounded domain, and let Ωh ⊂ Rd be a polygonal approximating domain in the sense
that Ωh → Ω, as a mesh parameter h → 0. Let {σk(Ω)}∞k=1, {σk,h(Ωh)}Nh

k=1 be the Steklov spectra on Ω,Ωh

respectively. In the situation where Ω itself is polygonal, we can consider Ωh = Ω. Then, finite element
approximation via triangular elements (affine maps of a reference element K̂), using conforming elements
based on the finite element triples based on pth degree polynomials (K̂, Pp(K̂),Σp(K̂)) are well characterized
and one can show, for instance, that under reasonable assumptions on the boundary,

|σk(Ω)− σk,h(Ωh)| = |σk(Ω)− σk,h(Ω)| ≤ Ck(Ω)h
2p.

Here Ck(Ω) may depend on the number k and the regularity of the eigenfunction associated with the kth

eigenvalue σk(Ω).
In the interesting situation where Ω ̸= Ωh, the rate above is not guaranteed, since∫

Ω

u dΩ ̸=
∫
Ωh

u dΩ,

for functions u defined on the union Ω ∪ Ωh of the two domains. What is the precise theoretical charac-
terization of the variational crime during the eigenvalue computation? In fact, given the assumption that
Ωh ̸= Ω, we notice the following

|σk(Ω)− σk,h(Ωh)| ≤ |σk(Ω)− σk(Ωh)|+ |σk(Ωh)− σk,h(Ωh)|.

Given that, as discussed above, error estimates for Steklov eigenvalues are well understood for polygonal
domains, we see that the second term on the right hand side of the inequality above can be bounded by

|σk(Ωh)− σk,h(Ωh)| ≤ Ck(Ωh)h
2p.

Now, the question that arises is, what error estimates can be obtained for the term |σk(Ω)− σk(Ωh)|? open
question posed in an AIM workshop in 2018, and remains an open important question.

The end-goal of this team activity is to solve this problem. Our team involves two spectral geometers
and two numerical analysts, and our initial objective is to inform each other of the precise state-of-the-art
in our respective fields as relevant to this question. We then aim to use Strang-type arguments informed by
results from spectral geometry to state and prove the critical theorem.

3 RIT outcomes
This RIT was the first such collaborative activity between the participants from numerical analysis and
spectral geometry on the Steklov problem using polygonal domains.

A major outcome of this RIT was to develop an initial shared vocabulary and to identify a collection of
open problems to study. Some of questions are specific to the Steklov problem. Other questions emerged
as we realized that techniques from geometry and analysis could address particular questions in numerical
analysis.

List of questions identified. In what follows, let Ω ⊆Rd, d = 2, 3 be a simply connected, contractible
bounded domain with smooth boundary. Let h > 0 be the mesh parameter, and the polyhedral approximat-
ing domain be Ωh.
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1. Variational crime: Let Ω ⊆R2, and fix eigenvalue index k. Let {Ωn : n ≥ 3} be a polygonal
exhaustion of Ω by n-gons. If Ω is a disk and Ωn is a regular n-gon , the Steklov eigenvalues satisfy
for all k ≥ 0

|σk(Ωn)− σk(Ω)| ≲k
n

log n
. (2)

What is the rate in the following situations?

• Ω a disk, Ωn an n− gon (not necessarily regular)

• Ω a smooth domain

2. Finite element approximation error: Fix an eigenvalue index range k ∈ [0, kmax]. Using finite
element approximating polynomials of degree p, find the rate of convergence r of for the finite element
approximation σk,h(Ωh) to σk(Ω). More precisely, can one find rate r and constant C(k, p,Ω) so that
for each k ∈ [0, kmax],

|σk(Ω)− σk,h(Ωh)| ≤ C(k, p,Ω)hr?

3. Isogeometric/Spline approximants of boundary: The two previous questions are linked. Gener-
ally, finite element methods place points on the boundary of Ω and connect these with straight lines,
that is a linear interpolation is used between any two points on the boundary.

Suppose {Ωn : n ≥ 3} is an exhaustion of Ω using high-order spline approximations of ∂Ω. Fix
eigenvalue index k. As n → ∞, what is the rate f(n) and the constant C(p, k) in the estimate

|σk(Ωn)− σk(Ω)| ≲k C(p, k)f(n) (3)

4. Lagrange interpolation constant: An important quantity in approximation theory is the Lagrange
interpolation constant. Let K be a triangle with vertices v1, v2, v3. We denote by ej the edge opposite
to vj and by αj the unit vector parallel to ej .

Let Π1 be the Lagrange interpolant, i.e. the map Π1 : W2,2(K) → P1 that sends f to the linear
function Π1(f) whose values at the vertices agree with those of f . We want to estimate the Lagrangian
interpolation constant

C1(K) = sup

{
∥∇f∥L2(K)

∥∇2f∥L2(K)

: f ∈ ker(Π1)

}
(4)

There are numerous upper bounds in the literature, which are valid under conditions on the triangles.
Can we use techniques from spectral geometry to get either universal upper bounds or easily-computable
bounds on curvilinear triangles?

5. Higher-order interpolation: For interpolation by higher-order polynomials on a triangle K, we wish
to estimate the interpolation constants for m ≤ ℓ− 1

Cm(K) = sup

{∥f∥Hm−1(Ω)

|f |Hm(Ω)
: f ∈ ker(Πℓ)

}
(5)

where Πℓ : W2,2(K) → Pℓ. Can this be bounded in terms of explicitly computable isogeometric
quantities? The question is inspired by a result on interpolation onto constants. In this case, the
interpolation constant is bounded in terms of the first non-zero Neumann eigenvalue on the triangle,
which in turn can be bounded in terms of j1, 1.

We have made progress already on questions 1 and 4.
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